İş liderlerinin üretken yapay zekanın gerçek potansiyelinden yararlanmaları için 5 ipucu

Ekonomi 06.07.2023 - 08:50, Güncelleme: 06.07.2023 - 08:50
 

İş liderlerinin üretken yapay zekanın gerçek potansiyelinden yararlanmaları için 5 ipucu

Son zamanlarda üretken yapay zeka her yerde karşımıza çıkıyor. Gelişmiş sohbet robotlarının ve ChatGPT gibi diğer üretken yapay zeka teknolojilerinin ses getiren lansmanı, tüketicilerden iş liderlerine ve medyaya kadar herkesin dikkatini çekti. Ancak bu sohbet araçları, yapay zekanın potansiyel etkisi söz konusu olduğunda buzdağının sadece görünen kısmı. Üretken yapay zekanın daha da büyük değeri, şirketler bunu müşterileri ve çalışanları için uygulamaya başladıkça ortaya çıkacak. Üretken yapay zekanın, ürün tasarımından müşteri hizmetlerine, tedarik zinciri yönetimine ve çok daha fazlasına kadar geniş bir yelpazede kurumsal kullanım örnekleri bulunuyor. AWS'in (Amazon Web Services) sunduğu gibi yeni modeller ve bulutta geliştirici hizmetleri, her sektörde geniş çapta benimsenmenin kapısını açıyor. Üretken yapay zekanın potansiyelini ve riskini anlamak, şirketleri için avantaj elde etmek amacıyla bu teknolojiyi kullanmaya başlamak isteyen CIO'lar için kritik öneme sahip. McKinsey Global Institute'un raporuna göre, üretken yapay zekanın küresel ekonomiye yılda 4,4 trilyon dolara kadar değer katması bekleniyor. Boston Consulting Group’un verilerine göre ise yapay zeka gelirinin yüzde 30'u, 2025 yılına kadar 60 milyar dolarlık erişilebilir pazara ulaşacak olan üretken yapay zekadan gelecek. AWS Türkiye Ülke Müdürü Burak Aydın, üretken yapay zeka kullanmaya başlamak için beş ipucu paylaşıyor. 1. Verilerinizi düzenleyin Üretken yapay zeka artık aramızda ve dünyamız üzerinde dönüşüm yaratıcı bir etkiye sahip olmaya hazırlanıyor. İşinizde üretken yapay zekadan yararlanmanın potansiyel avantajları çok fazla, bunun gerisinde kalmanın dezavantajlı ise oldukça büyük. Ancak bu yolculuğun ilk adımı, yapay zeka/makine öğrenimi için doğru veri temellerine sahip olduğunuzdan emin olmaktan geçiyor. Kaliteli modelleri eğitebilmek için işe kendi şirketinizden gelen kaliteli ve birleşik verilerle başlamanız gerekiyor. Örneğin, küresel bir yazılım şirketi olan Autodesk, ürün tasarımcılarının binlerce yineleme oluşturmasına ve en uygun tasarımı seçmesine yardımcı olmak için AWS'de üretken bir tasarım süreci oluşturdu. Bu makine öğrenimi modelleri, kullanıcı tanımlı performans özellikleri, üretim süreci verileri ve üretim hacmi bilgilerine yönelik güçlü bir veri stratejisine dayanıyor. 2. Üretken yapay zekayı kendi verileriniz ile nasıl kullanabileceğinizi düşünün Üretken yapay zeka, işletmeler için tahmine dayalı modeller geliştirmek veya içerik oluşturmayı otomatikleştirmek için kullanılabilir. Örneğin, şirketler sermaye harcamaları ve rezervlere yönelik daha bilgiye dayalı önerilerde bulunmak için finansal tahmin ve durum planlaması oluşturabilirler. Veya üretken yapay zeka, klinisyenler için tanı, tedavi ve tedavi sonrası bakımına yönelik öneriler oluşturacak bir asistan görevi görebilir. Philips tam olarak bunu yapıyor. Sağlık teknolojisi şirketi, görüntü işleme özellikleri geliştirmek ve ses tanıma özelliğiyle klinik iş akışlarını basitleştirmek için Amazon Bedrock'u kullanacak ve bunların tümü üretken yapay zeka kullanarak gerçekleştirilecek. Ayrıca, envanter yerleşimi, stokta bulunmama sorunları, teslimatlar ve daha fazlasını daha hassas bir şekilde yönetmek amacıyla ürün yaşam döngülerini optimize etmek isteyen veya mağaza düzenleri oluşturmak, optimize etmek ve test etmek isteyen perakende şirketleri gibi AWS müşterilerinin üretken yapay zekadan yararlandığını görüyoruz. Bu kullanım alanlarını erkenden belirleyerek ve halihazırda sahip olduğunuz verilerle neler yapabileceğinizi araştırarak üretken yapay zekaya yaptığınız yatırımın hem hedefli hem de stratejik olmasını sağlayabilirsiniz. 3. Geliştirici üretkenliğinin sağlayacağı avantajları belirleyin Üretken yapay zeka, geliştiricilerin üretkenliği için önemli avantajlar sağlayabilir. Test etme ve hata giderme gibi tekrar eden kodlama işleri için güçlü bir yardımcı olabilir ve geliştiricilerin problem çözme becerileri gerektiren daha karmaşık görevlere odaklanmalarını sağlayabilir. CIO'ların, üretken yapay zekanın üretkenliği artırabileceği ve geliştirme süresini azaltabileceği alanları belirlemek için geliştirme ekipleriyle birlikte çalışmaları gerekiyor. 4. Çıktılara şüpheyle yaklaşın Üretken yapay zeka, ancak üzerinde eğitildiği veriler kadar iyi olabilir ve bunlarda her zaman önyargı veya hata riski bulunur. Bazen çıktı bir halüsinasyon, yani makul görünen ama aslında uydurulmuş bir cevap olabilir. Bu nedenle, geliştiricilerinizin, mühendislerinizin ve kullanıcılarınızın, yapay zeka çıktılarını kesin değil yönlendirici olarak kabul ettiklerinden emin olmanız gerekiyor.   Üretken yapay zeka çıktılarının doğruluğuyla ilgili iş beklentilerini yönetin ve bu teknolojiyi sorumlu kullanmanın getireceği bazı özel zorlukları da göz önünde bulundurun. Bu modeller ve sistemler hâlâ çok yeni ve insan bilgeliğinin, muhakemesinin ve küratörlüğün yerini hiçbir şey tutamaz. 5. Güvenlik, yasalar ve uyumluluk hakkında iyice düşünün Tüm teknolojilerde olduğu gibi, güvenlik ve gizlilik her şeyden önemli ve üretken yapay zeka, IP de dahil olmak üzere göz önünde bulundurmanız gereken yeni hususları beraberinde getiriyor. CIO'ların, bu riskleri tanımlamak ve azaltmak amacıyla güvenlik, uyumluluk ve hukuk ekipleriyle yakın bir şekilde çalışarak üretken yapay zekanın güvenli ve sorumlu bir şekilde kullanıldığından emin olmaları gerekiyor. Ayrıca, planlarınızın kapsamını uyumluluk ve düzenlemeleri de içine alacak şekilde genişletin ve kullandığınız verilerin kime ait olduğunu dikkatlice düşünün. Üretken yapay zeka, ilginç sorunların üstesinden gelen, insan performansını artıran ve üretkenliği en üst düzeye çıkaran dönüştürücü bir teknoloji olma potansiyeline sahip. Şimdi başlayıp kullanım örneklerini denemek, avantajlarından yararlanmak ve riskini anlamak, sizi işletmeniz için üretken yapay zekadan yararlanacak iyi bir konuma getirebilir. Kaynak: (BYZHA) Beyaz Haber Ajansı

Son zamanlarda üretken yapay zeka her yerde karşımıza çıkıyor. Gelişmiş sohbet robotlarının ve ChatGPT gibi diğer üretken yapay zeka teknolojilerinin ses getiren lansmanı, tüketicilerden iş liderlerine ve medyaya kadar herkesin dikkatini çekti.

Ancak bu sohbet araçları, yapay zekanın potansiyel etkisi söz konusu olduğunda buzdağının sadece görünen kısmı. Üretken yapay zekanın daha da büyük değeri, şirketler bunu müşterileri ve çalışanları için uygulamaya başladıkça ortaya çıkacak. Üretken yapay zekanın, ürün tasarımından müşteri hizmetlerine, tedarik zinciri yönetimine ve çok daha fazlasına kadar geniş bir yelpazede kurumsal kullanım örnekleri bulunuyor. AWS'in (Amazon Web Services) sunduğu gibi yeni modeller ve bulutta geliştirici hizmetleri, her sektörde geniş çapta benimsenmenin kapısını açıyor.

Üretken yapay zekanın potansiyelini ve riskini anlamak, şirketleri için avantaj elde etmek amacıyla bu teknolojiyi kullanmaya başlamak isteyen CIO'lar için kritik öneme sahip. McKinsey Global Institute'un raporuna göre, üretken yapay zekanın küresel ekonomiye yılda 4,4 trilyon dolara kadar değer katması bekleniyor. Boston Consulting Group’un verilerine göre ise yapay zeka gelirinin yüzde 30'u, 2025 yılına kadar 60 milyar dolarlık erişilebilir pazara ulaşacak olan üretken yapay zekadan gelecek. AWS Türkiye Ülke Müdürü Burak Aydın, üretken yapay zeka kullanmaya başlamak için beş ipucu paylaşıyor.

1. Verilerinizi düzenleyin

Üretken yapay zeka artık aramızda ve dünyamız üzerinde dönüşüm yaratıcı bir etkiye sahip olmaya hazırlanıyor. İşinizde üretken yapay zekadan yararlanmanın potansiyel avantajları çok fazla, bunun gerisinde kalmanın dezavantajlı ise oldukça büyük. Ancak bu yolculuğun ilk adımı, yapay zeka/makine öğrenimi için doğru veri temellerine sahip olduğunuzdan emin olmaktan geçiyor. Kaliteli modelleri eğitebilmek için işe kendi şirketinizden gelen kaliteli ve birleşik verilerle başlamanız gerekiyor.

Örneğin, küresel bir yazılım şirketi olan Autodesk, ürün tasarımcılarının binlerce yineleme oluşturmasına ve en uygun tasarımı seçmesine yardımcı olmak için AWS'de üretken bir tasarım süreci oluşturdu. Bu makine öğrenimi modelleri, kullanıcı tanımlı performans özellikleri, üretim süreci verileri ve üretim hacmi bilgilerine yönelik güçlü bir veri stratejisine dayanıyor.

2. Üretken yapay zekayı kendi verileriniz ile nasıl kullanabileceğinizi düşünün

Üretken yapay zeka, işletmeler için tahmine dayalı modeller geliştirmek veya içerik oluşturmayı otomatikleştirmek için kullanılabilir. Örneğin, şirketler sermaye harcamaları ve rezervlere yönelik daha bilgiye dayalı önerilerde bulunmak için finansal tahmin ve durum planlaması oluşturabilirler.

Veya üretken yapay zeka, klinisyenler için tanı, tedavi ve tedavi sonrası bakımına yönelik öneriler oluşturacak bir asistan görevi görebilir. Philips tam olarak bunu yapıyor. Sağlık teknolojisi şirketi, görüntü işleme özellikleri geliştirmek ve ses tanıma özelliğiyle klinik iş akışlarını basitleştirmek için Amazon Bedrock'u kullanacak ve bunların tümü üretken yapay zeka kullanarak gerçekleştirilecek.

Ayrıca, envanter yerleşimi, stokta bulunmama sorunları, teslimatlar ve daha fazlasını daha hassas bir şekilde yönetmek amacıyla ürün yaşam döngülerini optimize etmek isteyen veya mağaza düzenleri oluşturmak, optimize etmek ve test etmek isteyen perakende şirketleri gibi AWS müşterilerinin üretken yapay zekadan yararlandığını görüyoruz. Bu kullanım alanlarını erkenden belirleyerek ve halihazırda sahip olduğunuz verilerle neler yapabileceğinizi araştırarak üretken yapay zekaya yaptığınız yatırımın hem hedefli hem de stratejik olmasını sağlayabilirsiniz.

3. Geliştirici üretkenliğinin sağlayacağı avantajları belirleyin

Üretken yapay zeka, geliştiricilerin üretkenliği için önemli avantajlar sağlayabilir. Test etme ve hata giderme gibi tekrar eden kodlama işleri için güçlü bir yardımcı olabilir ve geliştiricilerin problem çözme becerileri gerektiren daha karmaşık görevlere odaklanmalarını sağlayabilir. CIO'ların, üretken yapay zekanın üretkenliği artırabileceği ve geliştirme süresini azaltabileceği alanları belirlemek için geliştirme ekipleriyle birlikte çalışmaları gerekiyor.

4. Çıktılara şüpheyle yaklaşın

Üretken yapay zeka, ancak üzerinde eğitildiği veriler kadar iyi olabilir ve bunlarda her zaman önyargı veya hata riski bulunur. Bazen çıktı bir halüsinasyon, yani makul görünen ama aslında uydurulmuş bir cevap olabilir. Bu nedenle, geliştiricilerinizin, mühendislerinizin ve kullanıcılarınızın, yapay zeka çıktılarını kesin değil yönlendirici olarak kabul ettiklerinden emin olmanız gerekiyor.  

Üretken yapay zeka çıktılarının doğruluğuyla ilgili iş beklentilerini yönetin ve bu teknolojiyi sorumlu kullanmanın getireceği bazı özel zorlukları da göz önünde bulundurun. Bu modeller ve sistemler hâlâ çok yeni ve insan bilgeliğinin, muhakemesinin ve küratörlüğün yerini hiçbir şey tutamaz.

5. Güvenlik, yasalar ve uyumluluk hakkında iyice düşünün

Tüm teknolojilerde olduğu gibi, güvenlik ve gizlilik her şeyden önemli ve üretken yapay zeka, IP de dahil olmak üzere göz önünde bulundurmanız gereken yeni hususları beraberinde getiriyor. CIO'ların, bu riskleri tanımlamak ve azaltmak amacıyla güvenlik, uyumluluk ve hukuk ekipleriyle yakın bir şekilde çalışarak üretken yapay zekanın güvenli ve sorumlu bir şekilde kullanıldığından emin olmaları gerekiyor. Ayrıca, planlarınızın kapsamını uyumluluk ve düzenlemeleri de içine alacak şekilde genişletin ve kullandığınız verilerin kime ait olduğunu dikkatlice düşünün.

Üretken yapay zeka, ilginç sorunların üstesinden gelen, insan performansını artıran ve üretkenliği en üst düzeye çıkaran dönüştürücü bir teknoloji olma potansiyeline sahip. Şimdi başlayıp kullanım örneklerini denemek, avantajlarından yararlanmak ve riskini anlamak, sizi işletmeniz için üretken yapay zekadan yararlanacak iyi bir konuma getirebilir.

Kaynak: (BYZHA) Beyaz Haber Ajansı

Habere ifade bırak !
Habere ait etiket tanımlanmamış.
Okuyucu Yorumları (0)

Yorumunuz başarıyla alındı, inceleme ardından en kısa sürede yayına alınacaktır.

Yorum yazarak Topluluk Kuralları’nı kabul etmiş bulunuyor ve trabzonhabermerkezi.com sitesine yaptığınız yorumunuzla ilgili doğrudan veya dolaylı tüm sorumluluğu tek başınıza üstleniyorsunuz. Yazılan tüm yorumlardan site yönetimi hiçbir şekilde sorumlu tutulamaz.
Adana escort bayan Çukurova escort bayan Seyhan escort bayan Ankara escort bayan Mamak escort bayan Etimesgut escort bayan Polatlı escort bayan Pursaklar escort bayan Haymana escort bayan Çankaya escort bayan Keçiören escort bayan Sincan escort bayan Antalya escort bayan Kumluca escort bayan Konyaaltı escort bayan Manavgat escort bayan Muratpaşa escort bayan Kaş escort bayan Alanya escort bayan Kemer escort bayan Bursa escort bayan Eskişehir escort bayan Gaziantep escort bayan Şahinbey escort bayan Nizip escort bayan Şehitkamil escort bayan İstanbul escort bayan Merter escort bayan Nişantaşı escort bayan Şerifali escort bayan Maltepe escort bayan Sancaktepe escort bayan Eyüpsultan escort bayan Şişli escort bayan Kayaşehir escort bayan Büyükçekmece escort bayan Beşiktaş escort bayan Mecidiyeköy escort bayan Zeytinburnu escort bayan Sarıyer escort bayan Bayrampaşa escort bayan Fulya escort bayan Beyoğlu escort bayan Başakşehir escort bayan Tuzla escort bayan Beylikdüzü escort bayan Pendik escort bayan Bağcılar escort bayan Ümraniye escort bayan Üsküdar escort bayan Esenyurt escort bayan Küçükçekmece escort bayan Esenler escort bayan Güngören escort bayan Kurtköy escort bayan Bahçelievler escort bayan Sultanbeyli escort bayan Ataşehir escort bayan Kağıthane escort bayan Fatih escort bayan Çekmeköy escort bayan Çatalca escort bayan Bakırköy escort bayan Kadıköy escort bayan Avcılar escort bayan Beykoz escort bayan Kartal escort bayan İzmir escort bayan Balçova escort bayan Konak escort bayan Bayraklı escort bayan Buca escort bayan Çiğli escort bayan Gaziemir escort bayan Bergama escort bayan Karşıyaka escort bayan Urla escort bayan Bornova escort bayan Çeşme escort bayan Kayseri escort bayan Kocaeli escort bayan Gebze escort bayan İzmit escort bayan Malatya escort bayan Manisa escort bayan Mersin escort bayan Yenişehir escort bayan Mezitli escort bayan Erdemli escort bayan Silifke escort bayan Akdeniz escort bayan Anamur escort bayan Muğla escort bayan Bodrum escort bayan Milas escort bayan Dalaman escort bayan Marmaris escort bayan Fethiye escort bayan Datça escort bayan Samsun escort bayan Atakum escort bayan İlkadım escort bayan Adıyaman escort bayan Afyonkarahisar escort bayan Ağrı escort bayan Aksaray escort bayan Amasya escort bayan Ardahan escort bayan Artvin escort bayan Aydın escort bayan Balıkesir escort bayan Bartın escort bayan Batman escort bayan Bayburt escort bayan Bilecik escort bayan Bingöl escort bayan Bitlis escort bayan Bolu escort bayan Burdur escort bayan Çanakkale escort bayan Çankırı escort bayan Çorum escort bayan Denizli escort bayan Diyarbakır escort bayan Düzce escort bayan Edirne escort bayan Elazığ escort bayan Erzincan escort bayan Erzurum escort bayan Giresun escort bayan Gümüşhane escort bayan Hakkari escort bayan Hatay escort bayan Iğdır escort bayan Isparta escort bayan Kahramanmaraş escort bayan Karabük escort bayan Karaman escort bayan Kars escort bayan Kastamonu escort bayan Kırıkkale escort bayan Kırklareli escort bayan Kırşehir escort bayan Kilis escort bayan Konya escort bayan Kütahya escort bayan Mardin escort bayan Muş escort bayan Nevşehir escort bayan Niğde escort bayan Ordu escort bayan Osmaniye escort bayan Rize escort bayan Sakarya escort bayan Siirt escort bayan Sinop escort bayan Sivas escort bayan Şanlıurfa escort bayan Şırnak escort bayan Tekirdağ escort bayan Tokat escort bayan Trabzon escort bayan Tunceli escort bayan Uşak escort bayan Van escort bayan Yalova escort bayan Yozgat escort bayan Zonguldak escort bayan
Sitemizden en iyi şekilde faydalanabilmeniz için çerezler kullanılmaktadır, sitemizi kullanarak çerezleri kabul etmiş saylırsınız.